# MATH 264 ADVANCED CALCULUS # Tutorial 5 (Line Integrals) # Maple code by Sacha Nandlall # INSTRUCTIONS # Each block of code represents one tutorial problem # To run the code in one block, click anywhere in the code for that block and hit the Enter key # Be sure to run the code in the second block (the one below this), which loads some required Maple packages # Modify this code to solve your own problems, such as those on your assignments!# Packages (RUN THIS BLOCK FIRST!!) with(plots): with(VectorCalculus): SetCoordinates('cartesian'[x,y,z]):Warning, the name changecoords has been redefinedWarning, the assigned names `<,>` and `<|>` now have a global binding Warning, these protected names have been redefined and unprotected: `*`, `+`, `.`, D, Vector, diff, int, limit, series# PROBLEM 3, SECTION 15.3 (ADAMS) PathInt((1 + t), [x, y, z] = Path(<3*t, 3*t^2, 2*t^3>, t=0..1), 'inert') = PathInt((1 + t), [x, y, z] = Path(<3*t, 3*t^2, 2*t^3>, t=0..1));NiMvLUkkSW50RzYkSSpwcm90ZWN0ZWRHRidJKF9zeXNsaWJHNiI2JCwkKiYsJkkidEdGKSIiIkYvRi9GLyokLCZGL0YvKiRGLiIiI0YzRjMjRi9GMyIiJC9GLjsiIiFGLyIiKQ==# PROBLEM 7, SECTION 15.3 (ADAMS) PathInt(x^2, [x, y, z] = Line( <0, 0, 0>, <3, 1, -2> ), 'inert') = PathInt(x^2, [x, y, z] = Line( <0, 0, 0>, <3, 1, -2> ));NiMvLUkkSW50RzYkSSpwcm90ZWN0ZWRHRidJKF9zeXNsaWJHNiI2JCwkKiZJInRHRikiIiMiIzkjIiIiRi4iIiovRi07IiIhRjEsJCokRi9GMCIiJA==# PROBLEM 1, SECTION 15.4 (ADAMS) LineInt( VectorField( <x*y, -x^2, 0> ), Path( <t, t^2, 0>, t=0..1 ), 'inert') = LineInt( VectorField( <x*y, -x^2, 0> ), Path( <t, t^2, 0>, t=0..1 ) );NiMvLUkkSW50RzYkSSpwcm90ZWN0ZWRHRidJKF9zeXNsaWJHNiI2JCwkKiRJInRHRikiIiQhIiIvRi07IiIhIiIiI0YvIiIl# PROBLEM 5, SECTION 15.4 (ADAMS) LineInt( VectorField( <y*z, x*z, x*y> ), Path( <cos(t), sin(t), sin(t)>, t=0..(2*Pi)), 'inert') = LineInt( VectorField( <y*z, x*z, x*y> ), Path( <cos(t), sin(t), sin(t)>, t=0..(2*Pi)));NiMvLUkkSW50RzYkSSpwcm90ZWN0ZWRHRidJKF9zeXNsaWJHNiI2JCwmKiQtSSRzaW5HRiY2I0kidEdGKSIiJCEiIiomLUkkY29zR0YmRi8iIiNGLSIiIkY2L0YwOyIiISwkSSNQaUdGJ0Y2Rjo=